
7.1 Overview

7.1.1 Let
d

dx
F (x) = f (x). Then, we write ( )f dxx∫ = F (x) + C. These integrals are

called indefinite integrals or general integrals, C is called a constant of integration. All
these integrals differ by a constant.

7.1.2 If two functions differ by a constant, they have the same derivative.

7.1.3 Geometrically, the statement ( )f dxx∫ = F (x) + C = y (say) represents a

family of curves. The different values of C correspond to different members of this
family and these members can be obtained by shifting any one of the curves parallel to
itself. Further, the tangents to the curves at the points of intersection of a line x = a with
the curves are parallel.

7.1.4 Some properties of indefinite integrals

(i) The process of differentiation and integration are inverse of each other,

i.e., ( ) ( )d
f dx fx x

dx
=∫  and ( ) ( )' Cf dx fx x= +∫ , where C is any

arbitrary constant.

(ii) Two indefinite integrals with the same derivative lead to the same family of
curves and so they are equivalent. So if f and g are two functions such that

( ) ( )
d d

f dx g x dxx
dx dx

=∫ ∫ , then ( )f dxx∫  and ( )g dxx∫ are equivalent.

(iii) The integral of the sum of two functions equals the sum of the integrals of

the functions i.e., ( ) ( )( ) dxf gx x+∫ = ( )f dxx∫  + ( )g dxx∫ .

Chapter 7
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(iv) A constant factor may be written either before or after the integral sign, i.e.,

( )a f dxx∫ = ( )a f dxx∫ , where ‘a’ is a constant.

(v) Properties (iii) and (iv) can be generalised to a finite number of functions
f
1
, f

2
, ..., f

n
and the real numbers, k

1
, k

2
, ..., k

n
giving

( ) ( ) ( )( )1 1 2 2 ... , n nk f k f k f dxx x x+ + +∫ = ( ) ( ) ( )1 1 2 2 ... n nk f dx k f dx k f dxx x x+ + +∫ ∫ ∫
7.1.5 Methods of integration

There are some methods or techniques for finding  the integral where we can not
directly select the antiderivative of function f  by reducing them into standard forms.
Some of these methods are based on

1. Integration by substitution
2. Integration using partial fractions
3. Integration by parts.

7.1.6 Definite integral

The definite integral is denoted by ( )
b

a

f dxx∫ , where a is the lower limit of the integral

and b is the upper limit of the integral. The definite integral is evaluated in the following
two ways:

(i) The definite integral as the limit of the sum

(ii) ( )
b

a

f dxx∫ = F(b) – F(a), if F is an antiderivative of f (x).

7.1.7 The definite integral as the limit of the sum

The definite integral ( )
b

a

f dxx∫ is the area bounded by the curve y = f (x), the ordi-

nates x = a, x = b and the x-axis and given by

( )
b

a

f dxx∫ = (b – a) ( ) ( )( )1
lim ( ) ... –1
n

f a f f a ha h n
n→∞

+ + ++ 
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or

( )
b

a

f dxx∫ = ( ) ( )( )
0

lim ( ) ... –1
h

h f a f f a ha h n
→

+ + + ++   ,

where h = –
0

b a

n
→ as n → ∞  .

7.1.8 Fundamental Theorem of Calculus

(i) Area function : The function A (x) denotes the area function and is given

by A (x) = ( )
x

a

f dxx∫ .

(ii) First Fundamental Theorem of integral Calculus

Let f be a continuous function on the closed interval [a, b] and let A (x) be
the area function . Then A′ (x) = f (x) for all x ∈ [a, b] .

(iii) Second Fundamental Theorem of Integral Calculus

Let f be continuous function defined on the closed interval [a, b] and F be
an antiderivative of f.

( )
b

a

f dxx∫ = ( )[ ]F
b

ax = F(b) – F(a).

7.1.9 Some properties of Definite Integrals

P
0

 : ( )
b

a

f dxx∫ = ( )
b

a

f dtt∫

P
1

 : ( )
b

a

f dxx∫ = – ( )
a

b

f dxx∫ , in particular,, ( )
a

a

f dxx∫ = 0

P
2

 : ( )
b

a

f dxx∫ = ( ) ( )
c b

a c

f dx f dxx x+∫ ∫
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P
3

 : ( )
b

a

f dxx∫  = ( )–
b

a

f dxa b x+∫

P
4

 : ( )
0

a

f dxx∫  = ( )
0

–
a

f dxa x∫

P
5

 : ( )
2

0

a

f dxx∫  = ( ) ( )
0 0

2 –
a a

f dx f dxx a x+∫ ∫

P
6

 : ( )
2

0

a

f dxx∫  = ( )
0

2 ,if (2 ) ( )

0, if (2 ) ( ).

a

f dx f a x f xx

f a x f x


− =


 − =−

∫ ,

P
7

 :  (i) ( )
–

a

a

f dxx∫  = ( )
0

2
a

f dxx∫ , if f is an even function i.e., f (–x) = f (x)

(ii) ( )
–

a

a

f dxx∫ = 0, if f is an odd function i.e., f (–x) = –f (x)

7.2   Solved Examples

Short Answer (S.A.)

Example 1 Integrate
3 2

2

2 – 3ca b
x

xx

 + 
 

 w.r.t. x

Solution
3 2

2

2 – 3ca b
x dx

xx

 +  ∫

= ( )
2–1

–2 322 – 3a dx bx dx c x dxx +∫ ∫ ∫

= 4a

5

39
C

5

b cx
x

x
+ + +  .
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Example 2 Evaluate 2 2 2

3ax
dx

b c x+∫

Solution Let v = b2 + c2x2 , then dv  = 2c2 xdx

Therefore, 2 2 2

3ax
dx

b c x+∫  = 2

3

2

a dv

c v∫

                      =
2 2 2

2

3
log C

2

a
b c x

c
+ + .

Example 3 Verify the following using the concept of integration as an antiderivative.

3 2 3

– – log 1 C
1 2 3

x dx x x
x x

x
= + + +

+∫

Solution
2 3

– – log 1 C
2 3

d x x
x x

dx

 
+ + +  

= 1 –
22 3 1–

2 3 1

x x

x
+

+

= 1 – x + x2 –
1

1x +
 =

3

1

x

x +
.

Thus
2 3 3

– – log + 1 C
2 3 1

x x x
x x dx

x

 
+ + =  + 

∫

Example 4  Evaluate
1

1 –
x

dx
x

+
∫ , 1.x ≠

Solution Let 1
I =

1 –
x

dx
x

+
∫  = 2

1

1–
dx

x
∫  + 21–

x dx

x
∫  = –1

1sin Ix + ,
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where I
1 
=

 2
1 –

x dx

x
 .

Put 1 – x2  =  t2 ⇒ –2x dx = 2t dt. Therefore

   
1I  = – dt  = – t + C = 2

– 1– Cx +

Hence          I = sin–1x 2
– 1– Cx + .

Example 5  Evaluate ( )( )
, β

– –

dx

x x
>∫ α

α β

Solution Put x – α = t2. Then – xβ  = ( )2
– tβ α+ = 2

– –tβ α = 2
– –t α β+

and dx = 2tdt.   Now

( )2 2

2
I =

– –

t dt

t t
∫

β α
 

( )2

2
= 

β – –α

dt

t
∫

2 2
2

–

dt

k t
=  , where 2

–k β α=

= 
–1 –1 –

2sin C 2sin C
–

t x

k
+ = +

α

β α .

Example 6 Evaluate 
8 4

tan secx x dx∫

Solution I = 
8 4

tan secx x dx∫

= ( )8 2 2
tan sec secx x x dx∫

= ( )8 2 2
tan tan 1 secx x x dx+∫
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= 10 2 8 2tan sec tan secx x dx x x dx+∫ ∫

=
11 9tan tan

C
11 9

x x+ + .

Example 7 Find
3

4 23 2

x
dx

x x+ +∫

Solution Put x2 = t. Then 2x dx = dt.

Now I =
3

4 2 2

1

23 2 3 2

x dx t dt

x x t t
=

+ + + +∫ ∫

Consider 2

A B

1 23 2

t

t tt t
= +

+ ++ +

Comparing coefficient, we get A = –1, B = 2.

Then I =
1 2 –
2 2 1

dt dt

t t
 
 + + ∫ ∫

   =
1

2log 2 log 1
2

t t + − + 

   =

2

2

2
log C

1

x

x

+ +
+

Example 8 Find 2 22sin 5cos

dx

x x+∫

Solution Dividing numerator and denominator by cos2x, we have

I =
2

2

sec

2tan 5

x dx

x +∫
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Put  tanx = t so that sec2x dx = dt. Then

I = 2 2

2

1

22 5 5
2

dt dt

t
t

=
+  

+  
 

∫ ∫

= –11 2 2
tan C

2 5 5

t 
+   

= –11 2 tan
tan C

10 5

x 
+   

.

Example 9  Evaluate ( )
2

–1

7 – 5x dx∫ as a limit of sums.

Solution Here a =  –1 , b = 2, and h =
2 1

n

+
,  i.e, nh = 3 and f (x) = 7x – 5.

Now,  we have

( ) ( ) ( ) ( )( )
2

0
–1

7 – 5 lim –1 (–1 ) –1 2 ... –1 –1
h

x dx h f f h f h f n h
→

 = + + + + + + + ∫

Note that

f (–1) = –7 – 5 = –12

f (–1 + h) = –7 + 7h – 5 = –12 + 7h

f (–1 + (n –1) h) = 7 (n – 1) h – 12.
Therefore,

( ) ( ) ( )
2

0
–1

7 –5 lim –12 (7 – 12) (14 –12) ... (7 –1 –12) .
h

x dx h h h n h
→

=  + + + +  ∫

= ( )
0

lim 7 1 2 ... –1 –12
h

h h n n
→

  + + +   
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=
( )

0

–1
lim 7 – .12

2h

n n
h h n

→

 
 
 

 = ( )( )
0

7lim – –12
2h

nh nh h nh
→

 
  

= ( )( )7 3 3 – 0 –12 3
2

×  =
7 9 –9– 36

2 2

× = .

Example 10  Evaluate
72

7 7
0

tan

cot tan

x
dx

x x

π

+∫

Solution  We have

I =
72

7 7
0

tan

cot tan

x
dx

x x

π

+∫ ...(1)

=

7
2

7 70

tan –
2

cot – tan –
2 2

x
dx

x x

π π 
  

π π   +      

∫ by (P
4
)

( )
π

72

7 7
0

cot

cot tan

x dx

x dx x
=

+∫ ...(2)

Adding (1) and (2), we get

π
7 72

7 7
0

tan cot
2I

tan cot

x x
dx

x x

 +=  + 
∫

π
2

0

dx= ∫ which gives
π

I
4

= .
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Example 11 Find

8

2

10 –
10 –

x
dx

x x+∫

Solution  We have

I =

8

2

10 –
10 –

x
dx

x x+∫ ...(1)

  = ( )
8

2

10 – (10 – )

10 – 10 – 10 –

x
dx

x x+∫ by (P
3
)

⇒
8

2

I =
10 –

x
dx

x x+∫ (2)

Adding (1) and (2), we get

8

2

2I 1 8– 2 6dx= = =∫

Hence I = 3

Example 12 Find
4

0

1 sin 2x dx

π

+∫

Solution  We have

I = ( )
4 4

2

0 0

1 sin 2 sin cosx dx x x dx

π π

+ = +∫ ∫

= ( )
4

0

sin cosx x dx

π

+∫
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= ( ) 4
0

cos sinx x
π

− +

I = 1.

Example 13  Find 2 –1tanx x dx∫ .

Solution 2 –1I = tanx x dx∫

  =
3

–1 2
2

1tan  – .
1 3

x
x x dx dx

x+∫ ∫

  =
3

–1
2

1tan –
3 3 1

x x
x x dx

x

 
− + 

∫

  =
3 2

–1 21tan – log 1 C
3 6 6

x x
x x+ + + .

Example 14 Find 210 – 4 4x x dx+∫
Solution  We have

2I = 10 – 4 4x x dx+∫ ( ) ( )2 2= 2 –1 3x dx+∫
Put t = 2x – 1, then dt = 2dx.

Therefore, ( )221
I = 3

2
t dt+∫

2
21 9 9

= log 9 C
2 2 4

t
t t t

+ + + + +

( ) ( ) ( ) ( )2 21 9= 2 –1 2 –1 9 log 2 –1 2 –1 9 C
4 4

x x x x+ + + + + .
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Long Answer (L.A.)

Example 15  Evaluate  

2

4 2
2

x dx

x x+ −∫ .

Solution  Let x2 = t. Then

2

4 2 2

A B

( 2) ( 1) 2 12 2

x t t

t t t tx x t t
= = = +

+ − + −+ − + −

So t = A (t – 1) + B (t + 2)

Comparing coefficients, we get 
2 1

A , B
3 3

= = .

So

2

4 2 2 2

2 1 1 1

3 32 2 1

x

x x x x
= +

+ − + −

Therefore,

2

4 2 2 2

2 1 1

3 32 2 1

x dx
dx dx

x x x x
= +

+ − + −∫ ∫ ∫

= 
–12 1 1 1

tan log C
3 6 12 2

x x

x

−
+ +

+

Example16  Evaluate   
x x

x
dx

3 +
∫ 4

9�

Solution  We have

I = 

3
x x

x
dx

+
∫ 4

9�
  = 

3
x

x
dx

x dx

x
4 4

9 9� �
∫ +   = I

1
+ I

2
 .
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Now
3

1 4
I  =

– 9
x

x∫

Put t = x4 – 9 so that  4x3 dx = dt. Therefore

1

1
I  =

4

dt

t∫ 1

1
= log C

4
t +  =

4
1

1 log – 9 C
4

x +

Again, 2 4I  =
– 9

x dx

x∫ .

Put x2 = u so that 2x dx = du. Then

I
2 ( )22

1
=

2 – 3
du

u
∫ 2

1 – 3
= log C

2 6 3

u

u
+

× +

2

22

1 – 3
= log C

12 3

x

x
+

+ .

Thus I = I
1
 + I

2

2
4

2

1 1 – 3= log – 9 log + C
4 12 3

x
x

x
+

+ .

Example 17 Show that
22

0

sin 1
log( 2 1)

sin cos 2

x

x x



= +
+∫

Solution We have

 I =
22

0

sin

sin cos

x
dx

x x



+∫
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    =

2
2

0

π
sin –

2
π π

sin cos– –
2 2

x
dx

x x

  
  

   +      

∫ (by P4)

⇒  I =

π
22

0

cos

sin cos

x
dx

x x+∫

Thus, we get 2I =

π
2

0

1
π2 cos –
4

dx

x 
  

∫

      =

π
2

0

1 π
sec –

42
dxx

 
  ∫ =

2

0

1 π π
log sec tan– –

4 42
x x

     +          



     =
1 π π π πlog – logsec tansec tan –

4 4 4 42

      ++ −            

= ( ) ( )1 log – log 2 12 1
2

 −+       =
1 2 1log
2 2 –1

+

  =
( )21 2 1log

2 1

 + 
 

   = ( )2
log 2 1

2
+

Hence  I = ( )1
log 2 1

2
+ .

Example 18  Find ( )
1

2–1

0

tanx dxx∫
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Solution       I = ( )
1

2–1

0

tanx dxx∫ .

Integrating by parts, we have

I = ( )
2 12–1

0
tan

2

x
x   –

1 –1
2

2
0

1 tan
.2

2 1

x
x dx

x+∫

 =
12 2

–1
2

0

π – .tan
32 1

x
x dx

x+∫

 =
2π

32
– I

1
 , where I

1
 =

1 2
–1

2
0

tan
1

x
xdx

x+∫

Now          I
1
 =

1 2

2
0

1 –1
1

x

x

+
+∫  tan–1x dx

       =
1 1

–1 –1
2

0 0

1tan – tan
1

x dx x dx
x+∫ ∫

       = I
2
– ( )( )12–1

0

1
tan2 x = I

2
 –

2π
32

Here     I
2
 =

1
–1

0

tan x dx∫    = ( )
1

1–1
0 2

0

–tan
1

x
dxx x

x+∫

       = ( )1
2

0

π 1– log 1
4 2

x+    =
π 1– log 2
4 2

.

Thus   I
1
 =

2π 1 π– log 2
4 2 32

−
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Therefore,      I  =
2 2π π 1 π– log 2

32 4 2 32
+ +   =

2π π 1– log 2
16 4 2

+

=
2π – 4π

log 2
16

+ .

Example 19 Evaluate
2

–1

( )f x dx∫ , where f (x) = |x + 1| + |x| + |x – 1|.

Solution We can redefine f as ( )
2 – , if –1 0

2, if 0 1

3 , if 1 2

x x

f x xx

x x

< ≤
= + < ≤
 < ≤

Therefore, ( ) ( ) ( )
2 0 1 2

–1 –1 0 1

32 – 2f dx dx dx x dxx x x= + ++∫ ∫ ∫ ∫ (by P
2
)

   =

0 1 22 2 2

–1 0 1

32 – 2
2 2 2

x x x
x x

     + ++          

      =
1 1 4 10 – 3–2 – 2 –
2 2 2 2

     + ++              =
5 5 9 19

2 2 2 2
+ + = .

Objective Type Questions

Choose the correct answer from the given four options in each of the  Examples from
20 to 30.

Example 20 ( )cos –sinxe dxx x∫ is equal to

(A) cos Cxe x + (B) sin Cxe x +

(C) – cos Cxe x + (D) – sin Cxe x +
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Solution (A) is the correct answer since ( ) ( ) ( )' Cx xe dx e ff f xx x = + + ∫ . Here

f (x) = cosx, f (x) = – sin x.

Example 21 2 2sin cos

dx

x x∫ is equal to

(A) tanx + cotx + C ( B )  ( t a n x + cotx)2 + C

(C)  tanx – cotx + C (D) (tanx – cotx)2 + C

Solution (C) is the correct answer, since

I = 2 2sin cos

dx

x x∫  =
( )2 2

2 2

sin cos

sin cos

dxx x

x x

+
∫

  = 2 2sec cosecx dx x dx+∫ ∫ = tanx – cotx + C

Example 22 If
–

–

3 – 5
4 5

x x

x x

e e
dx

e e+∫ = ax + b log |4ex + 5e–x| + C, then

(A)
–1 7

,
8 8

a b= = (B)
1 7

,
8 8

a b= =

(C)
–1 –7

,
8 8

a b= = (D)
1 –7

,
8 8

a b= =

Solution (C) is the correct answer, since differentiating both sides, we have

–

–

3 –5
4 5

x x

x x

e e

e e+
= a + b

( )–

–

4 –5
4 5

x x

x x

e e

e e+
 ,

giving  3ex – 5e–x = a (4ex + 5e–x) + b (4ex – 5e–x). Comparing coefficients on both

sides, we get 3 = 4a + 4b and  –5 = 5a – 5b. This verifies
–1 7

,
8 8

a b= = .
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Example 23 ( )
b c

a c

f dxx
+

+
∫ is equal to

(A) ( )–
b

a

f dxx c∫ (B) ( )
b

a

f dxx c+∫

(C) ( )
b

a

f dxx∫ (D) ( )
–

–

b c

a c

f dxx∫

Solution  (B) is the correct answer, since by putting x = t + c, we get

I = ( )
b

a

f dtc t+∫ = ( )
b

a

f dxx c+∫ .

Example 24 If f  and g  are continuous functions in [0, 1] satisfying f (x) = f (a – x)

and g (x) + g (a – x) = a, then ( ) ( )
0

.
a

f g dxx x∫ is equal to

(A)
2

a
(B)

2

a ( )
0

a

f dxx∫

(C) ( )
0

a

f dxx∫ (D) a ( )
0

a

f dxx∫

Solution B is the correct answer. Since I = ( ) ( )
0

.
a

f g dxx x∫

= ( ) ( )
0

– –
a

f g dxa x a x∫ = ( ) ( )( )
0

–
a

f dxa gx x∫

= ( )
0

a

a f dxx∫  – ( ) ( )
0

.
a

f g dxx x∫  = ( )
0

a

a f dxx∫  – I
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or     I  = ( )
02

aa
f dxx∫ .

Example 25  If x = 2
0 1 9

y
dt

t+∫ and
2

2

d y

dx
 = ay, then a is equal to

(A) 3 (B) 6 (C) 9 (D) 1

Solution  (C) is the correct answer, since x = 2
0 1 9

y
dt

t+∫ ⇒ 2

1

1 9

dx

dy y
=

+

which gives  
2

2

d y

dx
= 2

18

2 1 9

y

y+ .
dy

dx
= 9y..

Example 26
1 3

2
–1

1

2 1

x x dx
x x

+ +
+ +∫ is equal to

(A) log 2 (B) 2 log 2 (C)
1

log 2
2

(D) 4 log 2

Solution (B) is the correct answer, since I =
1 3

2
–1

1

2 1

x x dx
x x

+ +
+ +∫

=
1 13

2 2
–1 –1

1

2 1 2 1

x x dx
x xx x

++
+ + + +∫ ∫   =   0 + 2 ( )

1

2
0

1

1

x dx
x

+
+∫

[odd function + even function]

= 2 ( )

1 1

2
0 0

1 1
2

11

x
dx dx

xx

+ =
++∫ ∫         =

1

0
2 log 1x +  = 2 log 2.
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Example 27 If
1

0 1

te
dt

t+∫ = a, then
( )

1

2
0 1

te
dt

t+∫ is equal to

(A) a – 1 +
2

e
(B) a + 1 –

2

e
(C) a – 1 –

2

e
(D) a + 1 +

2

e

Solution  (B) is the correct answer, since I =
1

0 1

te
dt

t+∫

   = ( )

1 1

2
0 0

1

1 1

t
t e

dte
t t

+
+ +∫ = a (given)

Therefore, ( )

1

2
0 1

te

t+∫ = a –
2

e
+ 1.

Example 28
2

–2

cos dxx xπ∫ is equal to

(A)
8

π
(B)

4

π
(C)

2

π
(D)

1

π

Solution  (A) is the correct answer, since I =
2

–2

cos dxx xπ∫   =
2

0

2 cos dxx xπ∫

= 2

1 3
22 2

1 30
2 2

cos cos cosdx dx dxx x x x x x

 
 + +π π π 
 
 
∫ ∫ ∫   =

8

π
.

Fill in the blanks in each of the Examples 29 to 32.

Example 29
6

8

sin

cos

x
dx

x∫ = _______.
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Solution
7tan

C
7

x +

Example 30 ( )
–

a

a

f dxx∫ = 0  if f is an _______ function.

Solution Odd.

Example 31 ( )
2

0

a

f dxx∫  = ( )
0

2
a

f dxx∫ , if f (2a – x) = _______.

Solution  f (x).

Example 32
2

0

sin

sin cos

n

n n

x dx

x x

π

+∫ = _______.

Solution
4

π
.

7.3  EXERCISE

Short Answer (S.A.)

Verify the following :

1.
2 –1
2 3

x
dx

x +∫  = x – log |(2x + 3)2| + C

2. 2

2 3

3

x
dx

x x

+
+∫  = log |x2 + 3x| + C

Evaluate the following:

3.
( )2 2

1

dxx

x

+
+∫ 4.

6log 5log

4log 3log

–
–

x x

x x

e e
dx

e e∫


